CONTACT
Department of Chemistry
Todd Wehr Chemistry, 101
1414 W Clybourn St
PO Box 1881
Milwaukee, WI 53233
(414) 288-3515
Problem with this webpage?
Report an accessibility problem
Any other problem, contact muchem@marquette.edu.
Dr. Sheldon Cremer |
Dr. William Donaldson
Donaldson's Biography Professor Donaldson received his B.A. in 1977 from Wesleyan University and his Ph.D. degree in organometallic chemistry from Dartmouth College in 1981. He was a Postdoctoral Research Associate at Brandeis University (1981-82) and a Visiting Assistant Professor at Wesleyan (1982-83) before joining the faculty at Marquette University in August 1983. Professor Donaldson was awarded the Edward D. Simmons Award for Junior Faculty Excellence (1988), the Rev. John R. Raynor Faculty Award for Teaching Excellence (1995), and a Alexander von Humboldt Research Fellow at Philipps- Universitaet Marburg, Germany (1990-91). He was a visiting Professor of the University of Strathclyde (Glasgow) for Jan-June 2015 and Feb-March 2019. |
Dr. Daniel Haworth
Haworth's Biography Professor Haworth obtained his B.S. from the University of Wisconsin--Oshkosh in 1950, his M.S. from Marquette University in 1952, with additional graduate work at the Oak Ridge School of Reactor Technology, 1953. He received his Ph.D. from St. Louis University in 1959. Professor Haworth was a long-time distinguished member of the chemistry faculty at Marquette, who retired in 2009 and passed away in June 2010. Professor Haworth was known for his outstanding teaching and mentoring, and taught general chemistry to thousands of Marquette freshman. He was beloved by his students, and awarded the Faculty Award for Teaching Excellence in 1971. |
Dr. Norman Hoffman |
Dr. Elena Ivanova
Ivanova's Biography Dr. Elena Ivanova, a Visiting Assistant Professor in the Chemistry Department, passed away suddenly on March 29, 2015. Dr. Ivanova had taught general and organic chemistry in the department since 2010, and was well-loved and admired by all who knew her. Her passion for teaching and her care and concern for her students set her apart, and she will be sorely missed. A memorial fund to develop a scholarship in Dr. Ivanova’s name has been established. Watch Dr. Ivanova's CHEM 2112 birthday surprise lecture! See footage from the candlelight vigil held on March 30, 2015. |
Dr. James R. Kincaid
Kincaid's Biography Dr. James Kincaid, professor emeritus of chemistry and former chair of the Department of Chemistry, passed away on Monday, September 26, 2022. Dr. Kincaid received his Bachelor of Science at Xavier University and Ph.D. at Marquette University. He has retired from Marquette University after 38 years of distinguished research, teaching, and service in the Chemistry Department. He earned his Ph.D. at Marquette University in the 1970’s under the supervision of Dr. Kazuo Nakamoto – a world-renowned expert in vibrational spectroscopy. Following stints at Princeton University and the University of Kentucky, Jim joined the faculty of Marquette in 1984. He quickly established a productive research program focused on the application of resonance Raman spectroscopy to biological and energy-related molecules. Along the way, he published 150 papers that have been cited over 5000 times. His research lab was continuously funded with grants from the National Institutes of Health, National Science Foundation, and Department of Energy. In light of his extraordinary contributions to Marquette, he was honored as a Wehr Professor, Way Klingler Fellow, Habermann Chair, and Haggerty Award for Research Excellence. In addition, he served as Chemistry Department chair from 2017-2021. |
Dr. Michael A. McKinney |
Dr. Kazuo Nakamoto
Nakamoto's Biography Kazuo Nakamoto was born in Kobe, Japan. He received his B.S. and D.Sc. from Osaka University and remained at Osaka as a member of the faculty for an additional four years, except for the two years which he spent at Iowa State University working in the laboratory of Robert E. Rundle as a Fulbright Scholar. In 1958 he joined the faculty at Clark University, moving to Illinois Institute of Technology in 1961 and in 1969 he became the first Wehr Professor of Chemistry at Marquette University. Professor Nakamoto directed the research of more than 85 graduate students and postdoctoral associates and published more than 210 papers and 15 review articles. He was a pioneer in the use of metal isotopes to elucidate the involvement of metals in low frequency vibrations in metallic complexes, a discovery that helped fuel the rapid growth in the developing field of bioinorganic chemistry. He then turned his attention to biological problems and began a vigorous research program dealing with heme-related compounds. He was also amongst the first to use matrix isolation techniques to prepare and characterize unstable species, including the biologically relevant ferryl heme complexes, an important intermediate in many oxidative heme enzymes. His interest also included DNA and the process of intercalation. Using oligonucleotides synthesized to include specific sequences, he established criteria that can be used to deduce the site specificity of these compounds. He was able to differentiate between exterior (groove) binding and interior (intercalation) binding through careful vibrational analysis. In keeping with his life-long interest in communicating the excitement of science, he authored several influential texts in the field of spectroscopy, including his very famous 2-volume work on Infrared and Raman Spectra of Inorganic and Coordination Compounds, the sixth edition of which was issued in 2009, and in 2008 coauthored a new book entitled Drug-DNA Interactions: Structures and Spectra. Remarkably, his passion for science and dedication to accomplishment were clearly manifested, even up to the final weeks of his life, as he was continually pondering new points to include in planned future editions of his books. In spite of his great scientific success, he remained a genuinely modest man who will long be missed by the many of us who knew and admired him. |
Dr. Rajendra Rathore
Rathore's Biography Rajendra Rathore, Pfletschinger-Habermann Professor of Organic Chemistry at Marquette University, unexpectedly passed away on February 16, 2018, following a brief battle with respiratory disease. Dr. Rathore was a devoted husband and loving father to two daughters, and had a zeal for life that was embodied in his passion for his family, as well as for his science. Professor Rathore received his M.Sc. in 1986 from the Indian Institute of Technology (IIT)-Kanpur and earned his Ph.D. in Organic Chemistry from the University of Western Ontario in London, Canada in 1990. He was a post-doctoral research associate (1992-1997) and a visiting assistant professor (1997-2000) at the University of Houston under the supervision of Dr. Jay K. Kochi. He joined the faculty at Marquette University in August 2000. Dr. Rathore made key contributions to the areas of organic supramolecular and materials chemistry. He was particularly interested in the rational design and synthesis of novel electro-active molecules with applications in molecular recognition, photovoltaics, and molecular electronics. His recent work demonstrated that frontier molecular orbitals can be applied in the design and synthesis of novel electro-active species, akin to their well-known application in the rationalization of pericyclic reactions. During Dr. Rathore’s incredibly distinguished career, he has published more than 150 articles in various respected journals, including Science, Journal of the American Chemical Society, and Angewandte Chemie. He has an h-index of 35, and his research papers have been cited more than 3,700 times. Dr. Rathore’s incredible passion for research and science will live on through the Raj Rathore Memorial Lecture and annual Raj Rathore Memorial Scholarship. Donations to the Rathore Memorial Fund can be made online. |
Dr. Michael D. Ryan
Ryan's Biography Professor Ryan obtained his B.S. degree in 1969 from the University of Notre Dame and his Ph.D. in 1973 from the University of Wisconsin. His interest in electroanalytical chemistry led him to a postdoc at the University of Arizona before joining the faculty here in 1974. He also took a sabbatical leave at the University of Iowa with D. Coucouvanis (1981-82), and the University of Paris VII with J.-M. Saveant (1995-96). The primary aim of his research has been to investigate multi-electron reactions that occur either in solution or at the electrode surface. This has led to the study of two important systems: 1) the multi-electron reduction of iron nitrosyls to hydroxylamine/ammonia, and, 2) the electrochemistry of electroactive materials in room temperature ionic liquids (RTILs). The first system has been observed in nature with the assimilatory and dissimilatory nitrite reductases. The assimilatory nitrite reductases contain a unique heme group, called a siroheme (a derivative of tetrahydroporphines), while the latter reductase often contains heme d1, a porphinedione. Using UV/visible and infrared spectroelectrochemistry, the effect of the macrocycle on the redox properties of the metalloporphyrin derivative, and its nitrosyl complex was studied, and interpreted using DFT calculations. The primary focus of the work now is the identification and characterization of the protonated iron nitroxyl complex (Fe(P)(HNO)). This species is an important intermediate in many biological processes. By combining electrochemical methods with spectroscopy, important intermediates can be identified using UV/visible and infrared spectroscopy. In addition, isolation and characterization of important species have been carried out using NMR, resonance Raman and x-ray methods. The second area of research has been the investigation of redox species in RTILs. The ionic nature of the solvent provides unique opportunities for the interaction of the redox products with the solvent, sometimes collapsing two separate reductions into a single wave. The RTILs have some very important properties that make them useful in chemistry, but their high viscosity and high cost can limit their applications. Mixtures of RTILs with molecular solvents provide a way to overcome these problems. One important aspects of molecular solvent/RTIL mixtures is that they are not homogeneous on the nanoscale. Even at relatively low concentrations of an RTIL, aggregates of RTIL species form and are able to solvate ionic species, leading to reactivity more closely related to the RTIL. The focus of his work has been to understand these interactions so that they can be used to make more efficient redox/catalytic systems with lower costs and solution viscosity. |
Dr. David Schrader
Schrader's Biography Professor Schrader obtained his B.S. from Iowa State University and earned his Ph.D. degree in 1961 from the University of Minnesota. His interests in theoretical chemistry led him to a research fellowship at Columbia University and the IBM Watson Laboratory. In 1963, he accepted a position as assistant professor in the chemistry department at the University of Iowa. Professor Schrader joined the faculty at Marquette in 1968. He became Research Professor in 1996 and Professor Emeritus in 2017. He passed away on August 15, 2023. His research focused on the quantum theory of atomic and molecular structure, especially systems interacting with positrons or positronium atoms, both bound and scattering states. The positron is the antiparticle of the electron. It sometimes called and thought of as "exotic," but it is the most common of the uncommon particles. It is easily, safely, and conveniently obtained for laboratory experiments in the form of a beta-emitter such as sodium-22. It is a unique probe for many chemical systems, and has proven valuable in industry as a tool for characterizing polymers, semiconductors, alloys, surfaces, coatings, and so forth. It has a rich chemistry, both in the gas and liquid phases. The positron annihilates in ordinary matter with a lifetime of about a nanosecond, which is a long time on most chemical scales (for example, air molecules vibrate a million times in a nanosecond). A positron can form a neutral atom with an electron. This atom, called "positronium," has a mass of about 0.0001 Daltons. It has all the states of the hydrogen atom but they are only half as deeply bound. He has been calculating wave functions for compounds of positronium, Ps, for many years. The simplest of these is PsH, positronium, which consists of two electrons, a positron, and a proton. There are many other compounds. He is currently writing a full-length book on the history of atomic energy. |
Dr. Mark Steinmetz
Steinmetz's biography Mark G. Steinmetz is a Professor Emeritus at Marquette University. He received his B.S degree in 1972 from the University of Kansas doing undergraduate research with Professor Richard S. Givens and received his Ph.D. degree in 1977 from the University of Wisconsin, where he studied under Professor Howard E. Zimmerman. After postdoctoral research with Professor Emil H. White at the Johns Hopkins University, he joined the faculty at Marquette University in 1979. During his career at Marquette University he worked in the areas of photochemistry of cumulenes, organosilanes, polysilanes, and photoremovable protecting groups |
Dr. Chieu Tran
Tran's Biography Chieu D. Tran received his B.S. degree from Kumamoto University in Japan and his Ph. D. from Texas A & M University. He joined Brookhaven National Laboratory as a Staff Scientist in 1982 after spending two years doing post-doctoral research at the Royal Institution of Great Britain. He joined the faculty at Marquette University in 1986. He was Wehr Distinguished Professor of Chemistry (1998-2003) and Pfletschinger-Habermann Distinguished Professor of Chemistry (2009-2014).. He has received numerous awards including the Lawrence G. Haggerty Award for Research Excellence, the American Chemical Society (ACS), Milwaukee Section Award, the Senior Invitation Fellowship given by the Japan Society for Promotion of Science (JSPS), the 2002 Sigma Xi Award for Distinguished Scientific Research Achievement, the 1999 Gold Medal Award given by the New York Section of the Society for Applied Spectroscopy (SAS), the Shannon Award given by the National Institutes of Health (NIH), and the 1992 Perkin-Elmer International Liquid Chromatography Technical Paper Award. He has been on Editorial Advisory Boards of several journals including Analytical Letters, Applied Spectroscopy Reviews, Microchemical Journal and Talanta. He has published over 180 papers in referred journals, gave more than 300 presentations at International, National Conferences, Universities, Government Laboratories and Industrial Research Laboratories. |
Dr. Charles Wilkie
Wilkie's Biography Professor Wilkie received his B.S. degree from the University of Detroit and Ph.D. from Wayne State University. He is an editor of Polymers for Advanced Technologies and serves on the editorial boards of Polymer Degradation and Stability and Thermochimica Acta. In 1992 Professor Wilkie was recipient of the ACS Milwaukee Section Award. He was a Fulbright-Hays scholar at the Universite Libre de Bruxelles in 1991-92. In 2007 he received the Marquette University Award for Excellence in Research. He is one of the organizers of the American Chemical Society Meeting on Fire retardancy, held every four years and he has taught a number of short courses on fire retardancy. |