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ABSTRACT

A large-eddy simulation model was used to generate and compare statistics of turbulence

during non-penetrative and penetrative dry convection. In penetrative convection, dimensionless ver-

tical velocity in updrafts were obtained to have almost the same values as in the non-penetrative

case. The counter-gradient transport of heat and moisture was found to be present during non-pen-

etrative convection at z/zi > 0.6. For penetrative convection, the counter-gradient transport of heat

occurred only in a layer 0.5 < z/zi < 0.75, while the counter-gradient transport of humidity was not

present. During non-penetrative convection, temperature and humidity were perfectly correlated. In

penetrative convection, the correlation coefficient was found to be less than unity and varying from

about 0.9 near the surface to about  -0.7  at the top of the mixed layer.
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1. INTRODUCTION

Convection occurs in a broad range of forms and scales. It can be observed in a container of

heated liquid, as well as in the atmosphere or lake. Convection takes the form of hexagonal cells or

horizontal rolls marked sometimes by a presence of clouds in the atmosphere (e.g., Agee, 1987), or

it is exhibited as foam patterns on lake surfaces. During the last three decades, laboratory and nu-

merical research have led to the accumulation of qualitative and quantitative knowledge of at-

mospheric convection.

Basic aspects of convection were explored with the convection tank (e.g., Deardorff et al.,

1969;  Willis and Deardorff, 1974;  Deardorff et al., 1980;  Adrian et al., 1986, Kumar and Adrian,

1986). An important portion of the present understanding of the convectively mixed layer was

achieved through numerical simulations, first through "large-eddy simulations" (LES), and later

through “direct numerical simulations” (DNS). The advantage of such simulations is based on the

fact that both LES and DNS use equations that are derivable from the exact set and, hence remain

faithful to the essential physics of the flow (e.g., Nieuwstadt, 1990, Wyngaard, 1992;  Mason,

1994). The first numerical large-eddy simulations were performed by Deardorff (1972, 1973 a, b,

1974). Large-eddy simulations of atmospheric convection were later investigated by e.g., Schemm

and Lipps (1976), Sommeria (1976), Moeng (1984), Nieuwstadt and Brost (1984), Sykes and

Henn (1988), Schmidt and Schumann (1989), and Mason (1989). Direct simulation of the at-

mospheric boundary layer were performed by e.g., Krettenauer and Schumann (1992), Coleman et

al. (1990). LES and DNS models proved to be an attractive source of turbulent data, especially be-

cause of known difficulties with assembling suitable data bases on atmospheric turbulence.

One of the basic features of atmospheric boundary layer convection is the exchange of

mass, momentum and heat between the top of the mixed layer and the stably stratified layer above.

The exchange is triggered by thermals penetrating the stable layer and forcing entrainment of

warmer air into the mixed layer (Deardorff et al., 1980). Effects of entrainment are important to the

structure of the mixed layer and have been studied experimentally (e.g. Caughey and Palmer, 1979;

Young, 1988) and also numerically (e.g., Deardorff, 1974). Based on these studies, numerous para-

metrization schemes been presented (e.g. Lilly, 1968;  Zeman and Tennekes, 1977;  Mahrt, 1979;

Boers, 1989).
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An interesting aspect of convection was reported by Adrian et al. (1986) during their non-

penetrative (without entrainment) convection experiments in a tank. The tank, 1.45 m x 1.5 m x 0.2

m in size, was heated from below by electrical mats and had an insulated solid lid at the top. The re-

sults obtained showed an intriguing resemblance of various turbulence statistics in the lower por-

tion of the non-penetrative mixed layer and in penetrative atmospheric boundary layer. Non-pene-

trative convection in a tank was successfully simulated by Krettenauer and Schumann (1992) by

using LES and DNS models. Krettenauer and Schumann demonstrated that numerical results can

be taken to be as reliable as laboratory measurements.

The goal of this study is also to simulate numerically the non-penetrative dry boundary lay-

er using a LES model. Nevertheless, the focus of this paper is different. We intend to compare the

obtained results for non-penetrative convection with the numerical simulation of the penetrative

convection in the atmosphere. With such a comparison, we aim to study the fundamental factor

which distinguishes both cases, i.e. the entrainment on the top of the convective atmospheric

boundary layer.

 

2. MODEL DESCRIPTION

2.1. Basic equations

The LES model applied in this study is based on a system of the differential equations  con-

sisting of conservation laws for momentum, mass and the first law of thermodynamics (e.g. Dear-

dorff, 1973, a, b, Lilly, 1987, Nieuwstadt, 1990):

            

∂ui

∂t
 +

∂ui uj

∂xj
 = - 

∂π
∂xj

 + β (θ -θo) δij - 2εijk Ωj uk - 
∂τij

∂xj

            

∂θ
∂t

 +
∂uj θ
∂xj

 = - 
∂Hj 

∂xj                                                                                             (1)

            

∂q
∂t

 +
∂uj q
∂xj

 = - 
∂Qj 

∂xj
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∂uj 
∂xj

 = 0

where 
xj  are the Cartesian coordinates (i = 1, 2, 3), x3  is parallel to gravity acceleration,  ui  are the

components of the velocity vector, θ  and 
q

 are the perturbations of the virtual potential temperature

and specific humidity with respect to the reference state values which are chosen to be constant with

height, 
π = P + 2

3
 E

 is the air pressure perturbation modified by adding a term proportional to the

subgrid turbulent kinetic energy  
E =  1

2
(ukuk - uk uk) , 

P = 
p - po

ρo  is the pressure perturbation term,

τij  =  (uiuj - ui uj) - 23
 E δij

 is the stress tensor (note that τkk = 0),  
H j =  (ujθ  - uj θ)  is the subgrid

turbulent temperature flux, 
Qj  =  (ujq - uj q)is the subgrid turbulent humidity flux, β = g/θo is the

buoyancy parameter, Ωj is the component of Earth’s angular velocity, δij  is Kronecker’s delta, and

εijk  is the unity tensor, θo, po are the reference state potential temperature  and  pressure.  The

overbar  indicates  a  running  grid volume average:

                            

f(x, y, z) = 1
∆x∆y∆z

  
x-∆x

x+∆x

 
y-∆y

y+∆y

f (X, Y, Z)  dX dY dZ
z-∆z

z+∆z

                  (2)

where ∆x, ∆y, ∆z are the grid increments. It can be proved that      f  ≠ f     and that the averaging op-

erator  commutes:    

∂f
∂xk

  = 
∂f

∂xk
 
. The use of potential temperature in non-divergent system is ap-

proximate, although admittedly common (Lilly, 1995).

2.2. Subgrid model

The set (1) of grid volume averaged equations constitutes a system of six differential equa-
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tions with six unknown quantities:   u1,  u2,  u3, θ, q, and π
. The system (1) also contains three

“subgrid” terms τij , Hj, Qj, which have to be related to the grid volume averaged variables. The

subgrid fluxes are parametrized as follows (e.g., Deardorff 1973 a, b):

                                                   
τij  = - km (

∂ui

∂xj
 + 

∂uj

∂xi
)

                                                    
Hj = - kh 

∂θ
∂xj

 
                                                                    (3)

                                                    
Qj = - kq 

∂q
∂xj

where km  is the eddy viscosity, and kh and kq are the eddy diffusivities.The eddy viscosity and

diffusivity coefficients are assumed to be functions of the subgrid turbulent kinetic energy E, mix-

ing length λ, and the Prandtl number Pr:

                                                   km = cm λ E1/2

                                                                                                                                               (4)
                                                    kh = kq = km / Pr.

The subgrid turbulent kinetic energy E satisfies the following prognostic equation which

can be derived based on the set (1) (e.g., Lilly, 1987):

                                          

∂E
∂t

 +
∂uj E
∂xj

 = - τij  
∂ui 

∂xj
 + β H3 - 

∂
∂xj

 (Tj + Pj) - ε
                          (5)

where ε is the viscous dissipation rate,  Tj is the turbulent transport term, and  Pj =  (π uj  - π uj )  is

the pressure term. The first and the last terms on the right hand side are expected to be dominant

during free convection.

The turbulent transport, pressure, and dissipation terms in (5) can be parametrized in the

following way  (e.g., Deardorff 1973 a, b):
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Pj + Tj = - ce km 

∂E
∂xj

                                                                                                                                                (6)

                                                        
ε = cε E

3/2

λ
                                                                                                                                                (7)
where ce and cε are constants, λ is the mixed length. The mixing length was defined as (Schumann,

1991 a):
                                                     λ = min (∆, cL z)                                                                 (8)

where the parameter ∆ = (∆x+∆y+∆z)/3 must fall within the inertial subrange. The following nu-

merical values of constants were adopted:   cε = 0.845,   ce = 2.0,   cm = 0.0856,   ch = 0.204,   cL =

0.845 (Schumann, 1991 a).

Following Schumann (1991 a) it was assumed that Pr = km/kh = cm/ch. In stably

stratified parts of the flow, the vertical subgrid heat and scalar fluxes were modified by assuming

that  
Pr = cm

ch
 (1 + 0.3 ∆2

 N
2

E
)
, where  N = (β ∂θ/dz)0.5

 is the Brunt-Väisälä frequency. The mo-

dification reduces the values of eddy diffusivities:  kh  =  km / Pr  =  ch λ E3/2 / (E + 0.3 ∆2N2).

The reduction can be explained by the fact that  in stable conditions all vertical motions including

diffusion are opposed by buoyancy. For very stable stratification, ∆2N2 >> E, and kh → ch  E3/2 / (

0.3 ∆ N2), which agrees with results obtained  previously by Lilly et al. (1974) and Weinstock

(1978).

The constants cm and cε can be related to the Smagorinsky constant cs as cs = cm3/4 /

cε1/4 (e.g., Sullivan et al., 1994). For the constants listed above one can obtain cs = 0.163. The

length scale ∆ is assumed to be equal to the average of the grid distances (∆  = 73.3 m, for values in

Table 1) rather than root-mean-cube (∆’  = [∆x∆y∆z]1/3 = 58.2 m), as assumed by Deardorff

(1974). Deardorff’s form has been recently shown to be correct by Scotti et al. (1993). For grid

anisotropy, Scotti et al. (1993) proposed correction of constants in eddy diffusivity coefficients. For
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the aspect ratio ∆z/∆x =1/5 (Table 1), cs is recommended to be multiplied by  1.3. It can be noted,

however, that because the ratio of both length scales ∆ and ∆’ is also about  1.3, the recommended

decrease of the length scale and the increase of cs cancel each other and consequently any correc-

tion is necessary.

 

2.3. Boundary conditions and numerical scheme

Horizontal boundary conditions were assumed to be periodic. At the lower boundary, con-

stant (in time and space) surface temperature and humidity fluxes were assumed, Ho = 0.001 K

m/s, and Qo = 0.005 g/kg m/s.  The vertical derivative of the turbulent kinetic energy was assumed

to be zero. The Monin-Obukhov similarity formulation was employed to calculate momentum flux-

es (e.g. Schmidt and Schumann, 1989). The upper boundary conditions were assumed to be stress

free for horizontal velocity components, and zero for vertical velocity. Moreover, a specified lapse

rate Γ for temperature (0 K/km or 3 K/km), zero lapse rate for humidity, and zero turbulent kinetic

energy were assumed at the top of the domain.

The numerical algorithm of the model was developed by Deardorff (1973 a, b). Adams-

Bashforth's scheme was employed for integration in time. Adams-Bashforth's scheme is known to

be unconditionally unstable, nevertheless, because the instability is weak and because of stabilizing

effects of the viscous terms, the method can be successfully used in practice. Central finite differ-

ences were used to approximate space derivatives on Arakawa's staggered mesh C with uniform

spacing. All scalar quantities were located in the center of a grid volume. The Poisson equation for

pressure was obtained by imposing zero finite-differences divergence operator upon the finite-dif-

ferences analog of the momentum equations in (1). The obtained equation was solved by "fast

Fourier transform" in horizontal, and "3-diagonal algorithm" in vertical. A numerical “sponge”

was applied in the upper portion of the model (the top ten grid points) to reduce reflection of gravity

waves (Nieuwstadt et al., 1992).
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Initially, the atmosphere was assumed to be at rest. The initial potential temperature profile

was constant (=300 K) with height within the mixed layer. Above the mixed layer, the temperature

increased with a constant positive lapse rate Γ. Initial random perturbations were imposed upon the

temperature field within the mixed layer  (e.g., Nieuwstadt et al., 1992). The initial potential humidi-

ty profile was constant  (=1g/kg) with height within the mixed layer and zero above. The geo-

strophic wind and the Coriolis terms were assumed to be zero. The roughness length was zo = 0.16

m.

2.4. Characteristics of performed simulations

 The parameters characterizing the simulations performed are presented in Table 1. In the

table, a symbol N refers to the non-penetrative simulation, and P to the penetrative simulation. Sym-

bols ∆t, ∆x, ∆y, and ∆z indicate time and space increments, w*  = (β zi Ho)1/3, T*  = Ho/w*, and

q*  =  Qo/w*  are the convective scales for vertical velocity, temperature, and humidity respectively,

zi  is the mixed layer height (defined as the height where the temperature heat flux has the minimum

value), and L is the Monin-Obukhov length, t* = zi/w* is the convective time scale.

 Runs N and P differ in the temperature lapse rate Γ at the top of the computational domain.

The temperature lapse rate Γ was 3 K/km for run P. In run N the upper boundary was insulated

(Γ=0) and moisture impermeable. In order to minimize effects of the upper boundary, the computa-

tional domain during run P extends to 2 zi = 1100 m . The computational domain during run N is

zi = 600 m. The sponge coefficient in run P was 0.01 s-1. The numerical “sponge” was turned off

during the N simulation.

Table 1. Characteristics of performed simulations

     Run   Time        Space            ∆t    ∆x=∆y   ∆z      w*        T*             q*        zi     - zi/L      t*
               steps        domain         [s]       [m]     [m]    [m/s]    [K]        [g/kg]   [m]                  [s]
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      N     6000      32x32x30       2.5     100      20    0.267   0.0037     0.019    600  120.0   37.5

      P      6000     32x32x55        2.5     100      20    0.262   0.0038     0.019    550  161.2   35.0

Krettenauer and Schumann (1992) used 64 x 64 x 16 grid points in their simulation of

non-penetrative convection. Their model was run for a time interval of t = 35 t* , and averaged the

results within a period of 5 t* . As can be seen in Table 1, run N uses 32 x 32 x 30 grid points,

while there are 32 x 32 x 55 grid points in run P. Consequently, runs N and P use less grid points

in the horizontal and a larger amount of grid points in the vertical with respect to Krettenauer and

Schumann’s (1992) simulation. It should be mentioned that Schumann (1991), Nieuwstadt et

al.(1992) have shown that basic characteristics of turbulence can be accurately represented even by

a low number of grid points

Calculations were performed in a horizontal domain size of 5.5 zi for run N, and 5.8 zi for

run P. A domain of size 4 zi is considered by Krettenauer and Schumann (1992) to be sufficient

and also minimum to cover all important scales. Sykes and Henn (1988) investigated the impact of

increasing numerical resolution and increasing domain size. They found that differences between

the runs with different domain sizes are small.

The time integration during run N was performed over a period of  6.7 t*, with t*  ≈ 37.5

minutes. The time integration during run P was performed over a period of 7.1 t* , with t*  ≈ 35

minutes. Figure 1 indicates that the kinetic energy in run N becomes approximately steady after

about 5000 time steps, which is 5.6 t* . A similar plot (not shown) was also obtained for run P. Fig-

ure 1 shows that the subgrid portion of the turbulent kinetic energy in N simulation (as well as in

run P) amounts to about 30% of the total kinetic energy. Therefore, 70% of turbulent kinetic energy

is directly resolved in this calculation. Consequently, the  simulations performed can be classified

as LES.  For comparison, in the simulation of Krettenauer and Schumann (1992) about 80% of

turbulent kinetic energy was directly resolved.

The results of all simulations were averaged in time and also horizontally in space. The time

averaging was executed during the last 500 time steps, every 50 time steps during run N, and every
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25 time steps during run P. Large values of the parameter -zi/L in Table 1 during both simulations

indicate extremely convective conditions, even though w* and zi are relatively small.

3. THE RESULTS

3.1. General description  of thermal convection

The vertical profiles of the total and subgrid virtual potential temperature fluxes are shown

in Figure 2. The total fluxes are defined as H = <w' θ '> + sgc, where < > indicates an averaged

quantity (over time and horizontally in space), the primed quantities are defined as departures from

horizontal means. The subgrid component of the total flux is defined as: sgc = < H3 >, where H3 is

described by eq. (3). Figure 2 indicates that both total fluxes are linear within the mixed layer. As

expected, the temperature flux at the top of the mixed layer vanishes in run N, while for run P the

flux at the top of the mixed layer is negative and equal to about 25%  of its surface value. The tem-

perature flux in the penetrative case vanishes at  z = 1.2 zi. The subgrid portion of the flux increases

at the top of the penetrative mixed layer, nevertheless, it remains much smaller than the total flux.

        Figure 3 shows the conditionally averaged dimensionless potential temperature excess (i.e.,

<θ’> = <θ −{θ} >, θ  is the temperature in updrafts, and {} denotes horizontal averaging) and

vertical velocity  (i.e., <w’> = <w >, since {w} = 0) in updrafts during runs N and P. Updrafts

were identified by positive vertical velocities, w> 0.  It is interesting to see that the dimensionless

vertical velocity in updrafts during the penetrative convection is nearly the same as in the non-pene-

trative case. The temperature excesses in updrafts in runs N and P coincide up to approximately 0.5

zi. Above this level, updrafts in run P are relatively cooler, due to heating of the upper portion of the

mixed layer by entraining warm air from the capping stable layer.

 The dimensionless mean temperature excess and vertical velocity in downdrafts (identified

by negative vertical velocities) in both simulations are presented in Figure 4. Temperature excesses
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in downdrafts in runs P and N coincide only below 0.2 zi. Above, downdrafts in run P are relatively

warmer as they carry entrained warm air from the capping stable layer. The vertical velocities in

downdrafts during both simulations are the same up to approximately 0.4 zi. Above this level, the

vertical velocity of downdrafts during run P is slightly smaller. This is caused by the fact that

downdrafts in run P are positively buoyant. In contrast, in the non-penetrative case, downdrafts are

negatively buoyant and sink relatively faster. The shape of the vertical velocity profiles and tempera-

ture profiles in updrafts and downdrafts is nearly symmetric. The magnitude of vertical velocity  in

updrafts is slightly larger than in downdrafts, which agrees with atmospheric observations of Young

(1988).

The temperature flux vanishes at the top of the non-penetrative domain due to vanishing of

the vertical velocity at the boundary. During penetrative convection, the vertical velocity in updrafts

at the top of the mixed layer is small but positive and the temperature excess is relatively large and

negative (Figure 3). Consequently, on average, updrafts at the top of the penetrative mixed layer

contribute to the negative temperature flux. On the other hand, the vertical velocity in downdrafts

near the top of the mixed layer is small and negative while the temperature excess is relatively large

and positive (Figure 4). Thus, downdrafts at the top of the penetrative mixed layer also contribute

on average to the negative temperature flux. The resulting total temperature flux is negative near the

top of the mixed layer during penetrative convection. A similar conclusion was obtained by Schu-

mann and Moeng (1991).

Figure 5 shows that in the bulk of the mixed layer, the relative area covered by updrafts dur-

ing run N is approximately constant with height. This agrees with the result of Moeng and Rotunno

(1990). The figure indicates that updrafts cover A 43%, while the relative area covered by

downdrafts is A  = 57%. It can be noticed, that since the horizontally averaged vertical velocity

must vanish (mass continuity restraint), then

                                                     A <w > +  A  <w > = 0                         (9)

Substituting values of A and A , yields  <w > = - 1.3 <w >. For  <w > = - 0.5 w* (see Figure

4), we obtain that <w> = 0.65 w*, which agrees with Figure 3. Consequently, non-penetrative
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convection is composed of narrower updrafts with larger velocities and wider and slower down-

drafts. A similar process is also observed in penetrative convection.

The relative area covered by updraftsin run P has a minimum near the top of the mixed

layer. A similar conclusion was obtained by Moeng and Rotunno (1990) based on Moeng’s LES

model (1984). The minimum value of Aproduced by Moeng’s model is about 40% (e.g. Schu-

mann and Moeng, 1991). It can be noticed in Figure 5 that Ais about  25% in run P. A compari-

son of various LES codes performed by Nieuwstadt et al. (1990) confirms that Schumann’s sub-

grid parameterization, described in Section 2.2, yields relatively small values of A.

In Figure 6, the vertical cross-sections of an instantaneous vertical velocity field is depicted

for non-penetrative convection. The figure shows that non-penetrative convection is organized into

separate columns of updrafts and downdrafts extending from the bottom to the top of the domain.

A similar result was also obtained by Moeng and Rotunno (1990). Moeng and Rotunno observed

that updrafts line up as irregular polygons in the lower levels and are more isolated above. Updrafts

that originate at the intersections of these polygons are more likely to survive to the upper levels.

During penetrative convection area covered by updrafts decreases with height. According to

Schmidt and Schumann (1989) large thermals have higher thermal velocity and suck in smaller

thermals from their neighborhood. Since updrafts in penetrative convection are negatively and

downdrafts are positively buoyant, work has to be performed against buoyancy to support vertical

motions of air near the top of the mixed layer and above it. The magnitude of the work performed

W (for a unit of mass over a unit of time) is proportional to the negative area in Figure 2. The nega-

tive area is located between the curve representing the flux and the z-axis, from the level ho at which

the heat flux crosses zero to the level h≈1.2zi, where the heat flux vanishes. The buoyant production

of turbulent kinetic energy (for a unit of mass over a unit of time) is proportional to the positive area

in the same figure, from the surface to the level ho. Both quantities W and P can be estimated as

follows:

                                   

W = β H
ho

h

 dz = 0.5 
w*

3

1 - R
 (1.2 R2 - 0.2 R)

                                                                                                                                                (10)
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P = β H
0

ho

 dz = 0.5  
w*

3

1 - R
 

where R is the heat flux ratio R = Hi / Ho, ho = zi /(1 - R) is the height at which the heat flux cross-

es zero (Sorbjan, 1995). In (10), the temperature flux was assumed to be linear and equal to  H =

Ho(1-z/zi) for non-penetrative convection. In the case of penetrative convection, two linear profiles

were used: H = Ho [(1 - z/zi) + R z/zi] for z ≤ zi, and H = 5 R Ho (1.2 - z/zi) for  zi <  z  ≤ 1.1 zi.

If we compare areas of positive and negative regions of the heat flux, it can be seen that  W

= (1.2R2 - 0.2 R) P. This suggest that for R = - 0.2 about   (1.2R2 - 0.2 R) ≈ 9% of the turbulent

kinetic energy generated by surface heating goes to support entrainment. Some other previously

presented estimates range from  4% to 20%  and were discussed by Lilly (1989).

Analysis of Figures 2-6 brings the following picture of the non-penetrative convection. Ris-

ing fluid is initially accelerated by buoyancy. The acceleration decreases with height because ther-

mals lose their buoyancy through a heat transfer to the surrounding fluid. Deceleration occurs when

updrafts approach the upper boundary. At the top, a rigid lid forces the fluid to spread. After this

horizontal spreading, temperature of air that was formerly in thermals becomes lower than the mean

temperature of the mixed layer (which is steadily warming). Consequently, the ascending thermals

are converted into a cool, descending flow. The full cycle consisting of a rising and a sinking phase

lasts approximately:  zi/(0.5w*) + zi/(0.65w*) = 3.5 t* , where the vertical velocities were estimated

based on Figures 3 and 4.

In the case of penetrative convection, rising fluid is also initially accelerated by buoyancy.

The acceleration decreases with height. Deceleration occurs when updrafts encounter a descending

positively buoyant flow, or  enter the entrainment zone. Updrafts, which are in average negatively

buoyant, are still able to penetrate the stable layer. The penetration forces entrainment of warm air

into the mixed layer. Downdrafts are in average positively buoyant. They gradually lose their buoy-

ancy through a heat transfer to the surrounding fluid.

In Figure 7, the dimensionless components of the resolvable turbulent kinetic energy budget

are depicted for both runs N and P. In the figure, DD = < ε > is the the averaged dissipation term

calculated based on equation (7), BP = β <w’θ’> is the buoyant production term, TT = 0.5 d/dz
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<u’2w’+v’ 2w’+w’ 3> is the turbulent transport term, PP = d/dz <w’P’> is the pressure transport

term and SP = - ( <u’w’> d<u>/dz + <v’w’> d<v>/dz)  is the shear production. Generally, the tur-

bulent kinetic energy is generated by buoyancy BP and lost due to the viscous dissipation DD. The

turbulent transport redistributes energy from near the lower surface (negative values of TT) to the

top (positive values of TT). The pressure transport term PP has a tendency to oppose this transfer.

The strongest differences between penetrative and non-penetrative cases are reflected upon the lar-

gest components of the energy balance, i.e. in dissipation DD and in buoyancy production BP.

 For steady state, non-penetrative convection, the mixed layer averaged value of the dissipa-

tion εN should be exactly equal to the mean buoyancy production, i.e. :

                                             

εN = 1zi
Ho (1-z/zi) dz =

o

zi

 0.5 w*
3 / zi

                                     (11)

Similarly, for a steady state of penetrative convection:

                                              
εP = 0.5 

(1+R)
(1-R)

w*
3

zi
 
                                                                 (12)

Consequently,

                                             εP / εN = (1 + R) / (1 - R)                                                          (13)

This suggest that dissipation in penetrative convection equals about (1 + R) / (1 - R) =  67%  of the

dissipation generated in the non-penetrative case (for R = - 0.2). This agrees with values in Figure

7.

3.2. Temperature fields

 Dimensionless profiles of the potential temperature lapse rate during runs N and P are

shown in Figure 8. Both profiles coincide up to the level z/zi = 0.5. Above z/zi = 0.6, the profile for

run N is positive which indicates the counter-gradient transport of heat in this region. The counter-
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gradient transport of heat for run P takes place in a layer  0.5 <  z/zi < 0.75, where both the lapse

rate and the flux are positive.

Figure 9 shows profiles of the dimensionless total and subgrid temperature variance during

runs N and P. The total temperature variance is defined as σθ2 = <θ '
2
> + sgc, where the subgrid

component of the total variance is defined as: sgc = 5 <H3>2 / <E>, < H3> is the averaged subgrid

vertical temperature flux, and <E> is the averaged subgrid turbulent kinetic energy  (Nieuwstadt et

al., 1992).

Both total variances in Figure 9 are in agreement up to the level z/zi = 0.8. Near the top of

the mixed layer, the dimensionless variance for penetrative convection exhibits a rapid increase of its

values. This fact can be explained by using an approximate expression which can be obtained from

the simplified temperature variance equation, with only production and dissipation terms retained

(Sorbjan, 1989):

                                       

<θ '
2
>

τ
 ≈ - <w' θ '>

∂<Θ>
∂z                                                                 (14)

where τ is the time scale. Since the temperature flux is negative at the top of the mixed layer, the

above equation indicates that the temperature variance will increase if the temperature lapse rate in-

creases.

 Dimensionless third moment of temperature during runs N and P is shown in Figure 10.

The penetrative curve agrees with results obtained by Kumar et al. (1986) in a tank. Both curves ap-

proximately coincide up to z/zi = 0.9. Only the resolvable portion of the moment is shown in Figure

10. Consequently, the values of the moment near the surface are not reliable.

3.3. Humidity fields

Figure 11 depicts the dimensionless total specific humidity fluxes during runs N and P. The

total fluxes are defined as Q =  <w'q'> + sgc , where sgc  denotes the subgrid component of the to-

tal flux defined as: sgc = < Q3 >. The total flux in run N is not exactly linear. This indicates  that
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the simulation time in this run was too short to achieve the steady state. The magnitude of the hu-

midity flux at the top of the mixed layer is about 20% of the surface value in run P.

Dimensionless humidity lapse rates during runs N and P are shown in Figure 12. In the

figure, both profiles approximately coincide up to the level z/zi = 0.4. Above z/zi = 0.6, the non-

penetrative lapse rate is positive which indicates the counter-gradient transport of moisture in the

upper portion of the mixed layer. In the penetrative case, the humidity flux in Figure 11 is positive

while the humidity lapse rate in Figure 12 is negative. Interestingly, this implies that the counter -

gradient transport of humidity is not present in the penetrative case. A positive humidity lapse rate

near the top of the non-penetrative boundary layer denotes an accumulation of mass near the upper

surface. The humidity lapse rate at the top in the penetrative case is negative and indicates  drying

by entrained air.

Wyngaard (1984), Moeng and Wyngaard (1984) decomposed scalar fields C into

“bottom-up” and “top-down” components, Cb and Ct. The “bottom-up” component was as-

sumed to be driven by the surface flux, while the “top-down” component was due to entrainment.

For mean humidity fields, two similarity functions gb and gt were defined as:

                                                       

zi
c*

∂Cb

∂z
 = -  gb(z/zi)

                                                             (15)

                                                       

zi
c*

∂Ct

∂z
 = -  Rc gt(z/zi)

where Rc is the scalar flux ratio at the top and the bottom of the mixed layer, c*  is the convective

scale defined analogously to T* and q*.

In non-penetrative case, we have R = Rc = 0. Consequently, the “bottom-up” function qb

is identical with the dimensionless humidity lapse rate in our non-penetrative run shown in Figure

12. The difference of the dimensionless lapse rates in penetrative and non-penetrative cases in Fig-

ure 12 defines the “top-down” function gt. A similar approach was adopted by Sorbjan (1989)

who proposed to decompose dimensionless statistics of turbulence during penetrative convection

into non-penetrative and residual components. Consequently, his decomposition and Wyngaard’s
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(1984) “bottom-up” and “top-down” decomposition are equivalent in the considered case.

 Moeng and Wyngaard (1984) assumed that the “bottom-up” and “top-down” de-compo-

sition applies to humidity and temperature fields alike. Validity of this assumption can be verified

by comparing Figures 8 and 12. The comparison shows that the dimensionless temperature and hu-

midity lapse rates for non-penetrative convection are equal:

                                                                

zi
q*

∂q
∂z

  = zi
T*

∂Θ
∂z .                                                           (16)

Dimensionless total humidity variances during runs N and P are shown in Figure 13.  The

total humidity variance is defined as σq2 =  <q'2> + sgc, where the subgrid component of the total

variance is defined as: sgc = 5 <Q3>2/<E>, < Q3> is the averaged subgrid vertical humidity flux,

and <E> is the averaged subgrid turbulent kinetic energy.

Inspection of Figures 9 and 13 indicates that dimensionless total variances for temperature

and humidity are approximately equal in the non-penetrative case. This fact can also be confirmed

in Figure 14 which shows that temperature and humidity during non-penetrative convection are per-

fectly correlated (with numerical accuracy). This is a consequence of the fact that both scalars fol-

low the some governing equations and have analogous boundary conditions. During penetrative

convection, rθq is less than unity and varies from about 0.9 near the surface to about -0.7 at the top

of the mixed layer.

The correlation coefficient rθq in the surface layer was reported to be less than unity by

many investigators. For instance, Wyngaard et al. (1978) after analysis of data collected in convec-

tive conditions over the East China Sea concluded that rθq ≈ 0.8. During convective conditions over

land, Druilhet et al. (1983) obtained rθq ≈ 0.6. Guillement et al. (1983), form a series of measure-
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ments in convective conditions over land, evaluated that rθq = 0.54 in the inertial subrange. Sorbjan

(1991) found that  in convective conditions  rθq = 0.76. Deardorff (1974) in his large eddy simula-

tion of the Wangara data obtained the correlation coefficient  rθq (between resolvable quantities) to

be about 0.6 near the surface. Our results imply that the lack of perfect correlation during penetra-

tive convection is caused by the drying effects of entrainment.

3.4. Velocity fields

Dimensionless total horizontal and vertical velocity variances σu2, σv2, σw2, during runs N

and P are shown in Figure  15.  Each  of  the  total  velocity  variances  consists of resolvable and

subgrid terms. For instance, σu2 = <u'2> + sgc, where the subgrid component sgc = 
2
3

  <E>
, and

<E> is the averaged subgrid turbulent kinetic energy. The curves obtained in run N are in accord

with results of Krettenauer and Schumann (1992) while the curves simulated in run P coincide with

results presented by Nieuwstadt et al. (1992).

 Values of the dimensionless variances in non-penetrative case are larger than in the penetra-

tive one. This fact is related to the reduction of the dissipation rate described by Equation. 13. As-

suming in this equation that the dissipation is related to the total turbulent kinetic energy Et =

<u’k2>/2+<E> as: ε ~ Et3/2 / zi, we obtain that the ratio for both runs,  EtP / EtN  = [(1 + R) / (1 -

R)]2/3. For R = - 0.2, we estimate that  EtP/ EtN ~ 0.76. Consequently, the total turbulent kinetic

energy during penetrative convection is reduced by about 24% with respect to the non-penetrative

case. The reduction is due to mixing of the entrained air with the mixed layer air. Assuming the

same reduction for each of the velocity variances, we obtain that velocity variances should be re-

duced in about   
2
3  * 24%  = 16%. It can be examined by inspection that this estimate agrees with

Figure 15.

 Near the top of the mixed layer in Figure 15, values of the dimensionless horizontal varianc-

es in non-penetrative case are larger than near the lower surface. This effect can be related to the fact
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that lower boundary conditions assume presence of a drag while the boundary condition at the top

of the domain is stress-free. Effects of “no-slip” and “free-slip” boundary conditions in non-

penetrative convection were considered by Moeng and Rotunno (1990).

4. CONCLUDING REMARKS

A large eddy simulation model was used to compare statistics of turbulence during non-

penetrative and penetrative dry convection. The comparison showed that the presence of entrain-

ment significantly alters dynamics of the mixed layer. In the non-penetrative case, convection is or-

ganized into separate columns of updrafts and downdrafts extending from the bottom to the top of

the domain. In penetrative convection, updrafts are embedded in slowly sinking air and their hori-

zontal area decreases with height.

In penetrative convection, dimensionless vertical velocity in updrafts  is almost the same as

in the non-penetrative case. In the upper half of the mixed layer, updrafts in the penetrative case are

relatively cooler than the ambient air, due to heating of the upper portion of the mixed layer by en-

training warm air from the capping stable layer. Downdrafts are initially warmer as they carry the

entrained warm air.

 The counter-gradient transport of heat and moisture during non-penetrative convection

takes place for  z/zi > 0.6. For run P, the counter-gradient transport of heat occurs in a layer 0.5 <

z/zi < 0.75, while the counter-gradient transport of humidity is not present.

During non-penetrative convection, temperature and humidity are perfectly correlated. Dur-

ing penetrative convection, the correlation coefficient is less than unity and varies from about 0.9

near the surface to about  -0.7 at the top of the mixed layer. This decorrelation is due to entrain-

ment.

About 9% of the turbulent kinetic energy generated by surface heating goes to support en-

trainment. Entrainment reduces the dissipation rate to about  70%  of the dissipation generated in

the non-penetrative case. The turbulent kinetic energy during the penetrative convection is reduced

by about 24% with respect to the non-penetrative case. Velocity variances are reduced by about

16%.
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TABLE 1.  Characteristics of performed simulations

   Run     Time       Space            ∆t      ∆x=∆y   ∆z      w*        T*             q*        zi    - zi/L       t*

               steps       domain         [s]       [m]     [m]    [m/s]    [K]        [g/kg]    [m]                   [s]

      N     6000      32x32x30      2.5     100      20    0.267   0.0037     0.019    600   120.0   37.5

      P      6000     32x32x55       2.5     100     20    0.262   0.0038      0.019    550   161.2   35.0

                                                 FIGURE CAPTIONS

Figure 1. Time history of the kinetic energy during run N.

Figure 2. Vertical distribution of the dimensionless total (solid line) and subgrid (dotted line) fluxes

of the potential virtual temperature for runs N and P.

Figure 3. Dimensionless mean potential virtual temperature excess and vertical velocity in updrafts 

for runs N and P.

Figure 4. Dimensionless mean excess of potential virtual temperature and vertical velocity in 

downdrafts for runs N and P.

Figure 5. Relative area covered by updrafts during runs N and P.

Figure 6. (a) Horizontal (x-y), and (b) vertical (x-z) cross-sections of an instantaneous vertical 

velocity field during non-penetrative convection. The horizontal cross-section is obtained 

at z=0.5zi, the vertical cross-section is obtained at y=0.5L. Contour interval = 0.15w*. 

Regions with positive velocities are shaded.

Figure 7. Dimensionless  components of the resolvable kinetic turbulent energy balance during  

runs N and P. All terms scaled by  w*3 / zi.
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Figure 8. Dimensionless lapse rate of potential virtual temperature for  runs N and P.

Figure 9. Dimensionless total (solid line) and subgrid (dotted line) variances of potential virtual 

temperature for runs N and P (scaled by T*2).

Figure 10. Dimensionless third moment of the potential virtual temperature (resolvable) during 

runs N and P.

Figure 11. Dimensionless total (solid line) and subgrid (dotted line) fluxes of specific humidity for 

runs N and P.

Figure 12. Dimensionless lapse rate of specific humidity for runs N and P.

Figure 13. Dimensionless total (solid line) and subgrid (solid line) variances of specific humidity 

for runs N and P (scaled by q*2).

Figure 14. Correlation coefficient  between potential virtual temperature and specific humidity for 

runs N and P.

Figure 15. Dimensionless total variances of horizontal and vertical components of velocity during 

runs N and P. All terms scaled by w*2.

    