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Motivating Example: Growth Charts
I US Centers for Disease Control and Prevention (CDC) and the

World Health Organization have developed growth charts for
childhood development: height by age, weight by age,
body mass index by age and weight by height

I Here we will focus on height, yt ,
by age in months, t = 24, . . . , 215 (2 to 17 years old)

I CDC uses the LMS method via natural cubic splines
(Cole and Green 1992 Statistics in Medicine)

I Three parameters estimated by penalized maximum likelihood
the Box-Cox power transformation, Rt ;
the mean, St ; and the coefficient of variation, Yt

zt =

{

−1+(yt/St )
Rt

RtYt
Rt ≠ 0

log(yt/St )

Yt
Rt = 0

}

∼ N(0, 1)

I But, this only uses part of the data: just males or just females
I What if we wanted to use all of the data?
I Or include more information like weight and race/ethnicity?
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What is Artificial Intelligence and Statistical Learning?
Artificial intelligence (AI) is a computer system’s ability to perform
tasks that normally require human intelligence such as driving a car
I 1941 (circa): “Machine Intelligence” coined by Alan Turing
I 1950: Turing’s Imitation Game (alike today’s Turing Test)
I 1956: “Artificial Intelligence” coined at Dartmouth Workshop
I 1950 to 2010: AI 1.0, basic research with limited capabilities
I 2011 to 2017: AI 2.0, deep learning
I 2018 to today: AI 3.0, foundation/large-language models
I Howell, Corrado & DeSalvo 2024 JAMA

Sylwester 1993 AMSTAT News
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What is Machine Learning (or Statistical Learning)?

I Machine learning, or statistical learning, is a field within AI to
develop methods that learn statistical relationships from
training data without being explicitly programmed to do so
(paraphrasing computer scientist Arthur Samuel 1959)

I For example, you could physically model childhood growth chart
data based on principles of human auxology or you could
nonparametrically learn the growth curves from training data

I Back in Samuel’s day, linear/logistic regression were considered
machine learning regression (MLR) for lack of alternatives;
however, they do NOT meet the definition due to restrictive
linearity and precarious parametric assumptions

I Linear/logistic regression are proto-MLR rather than MLR
I Today, by the term “MLR”, I mean the widely flexible sense of

without being explicitly programmed to do so
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What are black-box models?
I The term black-box, coined in 1945, for the development of an

experimental analysis with electronic circuits that had been in
practice about 20 years at that time (Belevitch 1962)

I Simply ignore the circuit details as-if hidden inside a black-box
instead, characterize the response output from its stimulus input
via experimentation, trial and error, etc.

I MLR’s are typically black-boxes and that is a down-side
a direct interpretation of the model itself is not evident
due to complexity, so don’t even bother trying (in stark contrast
to the trivial linear/logistic regression coefficients)

I In modern terms, a black-box model defies understanding via
inspection of the covariates and their associated parameters

I Rather, an intuitive interpretation is devised by other means
such as an orchestrated sequence of covariate setting predictions

I Therefore, the rising interest in marginal (explainable) effects
I Marginal effects are applicable to MLR in general, but here our

focus is on Bayesian Additive Regression Trees (BART)
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What is Machine Learning Regression (MLR)?

I MLR is extensible, but for the moment consider the general
regression case of a continuous outcome with Normal errors

yi = -0 + f (xi) + &i where &i
iid
∼ N

(

0, 22)

I f is an unspecified function whose form is to be learned from
the training data and xi is a vector of covariates for i = 1, . . . , T

I An important modern MLR extension that we will only touch on

yi = -0 + f (xi) + s(xi)&i where &i
iid
∼ L&

I f alone (or f and s) will be learned, but how?
I Following Samuel’s principle via Bayesian nonparametric

models without resorting to precarious restrictive assumptions
we don’t want to assume linearity nor pre-specify interactions
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What is Machine Learning Regression (MLR)?

I Ensemble learning discovered in 1997
Krogh & Solich 1997 Physical Review E

I An ensemble of machines (in our case binary trees) are fit
simultaneously that form the basis of an aggregate prediction
with superior performance to any single machine’s fit

I Ensembles are the best currently-known machine learning
method with respect to out-of-sample predictive performance for
so-called tabular data where all of the covariates are of different
types, i.e., age, sex, height, weight, etc.

I N.B. Deep learning is inferior to ensembles for tabular data
for optimal artificial neural net performance, the inputs need to
be all the same type, i.e., all pixels, words or audio waves, etc.
Lundberg and Erion et al. 2020 Nature Machine Intelligence
Shwartz-Ziv and Armon 2022. Information Fusion
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Why are Ensemble Learning predictions optimal?

I There is a trade-off between the bias and variance

I mean squared error = bias2 + variance

I Consider the spectrum of trade-offs

Linear regression is on the high bias/low variance end

Single-tree regression is on the low bias/high variance end

I While ensemble are in between: medium bias/medium variance

I BART is in the class of ensembles that both theoretically, and in
practice, have optimal out-of-sample predictive performance

Baldi & Brunak 2001 “Bioinformatics: machine learning approach”
Kuhn & Johnson 2013 “Applied Predictive Modeling”
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Selected BART references with URLs
Inception Chipman, George & McCulloch 2010 AOAS
BART R package Sparapani, Spanbauer & McCulloch 2021 JSS
Heteroskedastic Chipman, George et al. 2021 Bayesian Analysis
Monotonicity & Pratola, Chipman et al. 2020 JCGS
Outlier Detection Sparapani, Teng et al. 2022 JPGN
Variable Selection Linero 2018 JASA
(Big V) Liu, Rockova 2023 JASA
Big Data Pratola, Chipman et al. 2014 JCGS
(Big T) Entezari, Craiu et al. 2017 Canadian J of Stat
Skew/Multivariate Um, Linero et al. 2023 Statistics in Medicine
Nonparametric Rockova & Saha 2019 PMLR
Theory Rockova & van der Pas 2020 AOS
Survival Analysis Sparapani, Logan et al. 2016 Statistics in Medicine

Sparapani, Rein et al. 2020 Biostatistics
Sparapani, Logan et al. 2020 SMMR
Linero, Basak et al. 2021 Bayesian Analysis
Sparapani, Logan et al. 2023 Biometrics

https://dx.doi.org/10.1214/09-AOAS285
https://doi.org/10.18637/jss.v097.i01
https://dx.doi.org/10.1080/10618600.2019.1677243
https://doi.org/10.1214/21-BA1259
https://dx.doi.org/10.1097/MPG.0000000000003492
https://dx.doi.org/10.1080/01621459.2016.1264957
https://doi.org/10.1080/01621459.2021.1928514
https://doi.org/10.1080/10618600.2013.841584
https://doi.org/10.1002/cjs.11343
https://dx.doi.org/10.1002/sim.9613
https://proceedings.mlr.press/v89/rockova19a.html
https://dx.doi.org/10.1214/19-AOS1879
https://doi.org/10.1002/sim.6893
https://doi.org/10.1093/biostatistics/kxy032
https://doi.org/10.1177/0962280218822140
https://doi.org/10.1214/21-BA1285
https://doi.org/10.1111/biom.13857
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Single-tree regression model
Chipman, George & McCulloch 1998 JASA
yi is a continuous outcome where i indexes subjects i = 1, . . . , T
xi is a vector of covariates
T denotes the tree structure and branch decision rules
M ≡ {-1, -2, . . . , -R} denotes the leaf values
g(xi;T,M) is a regression tree function

yi = -0 + g(xi;T,M) + &i where &i
iid
∼ N

(

0, 22)
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Bayesian Additive Regression Trees (BART)

Chipman, George & McCulloch 2010 Annals of Applied Stat

yi = -0 + f (xi) + &i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (a, b, N, +, -0, 3)

f (xi) ≡
N
∑

h=1
g(xi;Th,Mh) N ∈ {50, 200, 500}

-hl |Th
prior
∼ N

(

0,
32

4N+2

)

leaves of Th

∈ Mh

22 prior
∼ ,.6−2 (.)
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The BART R package and binary trees

Sparapani, Spanbauer & McCulloch 2021
Journal of Statistical Software
R> write(post$treedraws$trees, "trees.txt")

R> tc <- textConnection(post$treedraws$tree)

R> trees <- read.table(file=tc, fill=TRUE, row.names=NULL, header=FALSE,

+ col.names=c("node", "var", "cut", "leaf"))

R> close(tc)

R> head(trees)
node var cut leaf

1 1000 200 1 NA

2 3 NA NA NA

3 1 0 66 -0.0010

4 2 0 0 0.0048

5 3 0 0 0.0357

6 3 NA NA NA

x1

0.005

< c1,67

0.036

≥ c1,67
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Bayesian Additive Regression Trees (BART)
Logan, Sparapani, McCulloch & Laud 2020 SMMR
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The BART short-hand implies the following priors

Priors
Covariate choice U({1, . . . , V}) or

D ()/V, . . . , )/V) Linero 2018 JASA
Branch decision point U({1, . . . , I})

Branching penalty P[Branch|tier] = a(1 + tier)−b

Default prior settings
a = 0.95, b = 2
Number of leaves 1 2 3 4+
Prior probability 0.05 0.55 0.27 0.13
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BART and Bayesian nonparametric theory
I frequentist theoretical justification for BART’s performance:

asymptotically consistent with a near optimal learning rate

I the BART posterior distribution concentrates around the truth at
a near optimal minimax rate

I the default BART Branching penalty is near optimal:
P[Branch|tier] = a(1 + tier)−b

I the optimal BART Branching penalty is now known to be:
P[Branch|tier] = $tier where 0 < $ < 0.5

Number of leaves 1 2 3 4+
Prior probability 0.00 (1 − $)2 2$(1 − $)(1 − $2)2 . . .
$ = 0.25 0.00 0.56 0.33 0.11
a = 0.95, b = 2 0.05 0.55 0.27 0.13

Rockova & van der Pas 2019 Annals of Statistics
Rockova & Saha 2019 Proceedings of Machine Learning Research
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Marginal Effects and
Machine Learning Regression (MLR)

I Suppose we have an MLR, f (x), that is likely a complex
function of the covariates with nonlinearities and interactions

I And we divide the covariates into those of interest, Y, and the
complement, I, not of interest: f (x) ≡ f (xY , xI)

I Typically, Y is of low-dimension since we intend to peak inside
the black-box by visualization: usually 1 to 3 dimensions

I Let fY (xY) denote the marginal effect of xY

E [y |xY] ≡ -0 + fY (xY)

fY (xY) ≡ ExI [ f (xY , xI)|xY]

=
∫

· · ·

∫

f (xY , xI) [xI |xY]dxI

where [xI |xY] is the distribution of xI |xY

=
∫

· · ·

∫

f (xY , xI) [xI]dxI assuming xY ⊥ xI
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Friedman’s partial dependence function (FPD) and
Marginal Effects Assuming Independent Covariates

E [y |xY] ≡ -0 + fY (xY)

fY (xY) ≡ ExI [ f (xY , xI)|xY]

= T−1
∑

i

f (xY , xiI) the partial dependence function

where xiI are the training values

fYm (xY) = T−1
∑

i

fm (xY , xiI)

f̂Y (xY) = S−1
∑

m

fYm (xY)

Friedman 2001 Annals of Statistics
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Friedman’s partial dependence function (FPD) and
Marginal Effects Assuming Independent Covariates

Linear regression example

yi = #0 + #1x1i + #2x2i + &i

f (x1i , x2i) = #1x1i + #2x2i

xY = x1

xI = x2

fY (x1) = Ex2 [ f (x1, x2i)|x1]

= Ex2 [#1x1 + #2x2i |x1]

= #1x1 + #2Ex2 [x2i]

= T−1
∑

i

f (x1, x2i)

= T−1
∑

i

(#1x1 + #2x2i)

= #1x1 + #2x̄2
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Friedman’s partial dependence function (FPD) and
Marginal Effects Assuming Independent Covariates

Linear regression example

Age

H
ei

gh
t (

cm
)

80

100

120

140

160

2 3 4 5 6 7 8 9 10 11



20/46

Probit BART for dichotomous outcomes

yi | pi
ind
∼ B( pi)

pi | f = �(-0 + f (xi)) where f
prior
∼ BART and -0 = �

−1
(ȳ)

zi |yi , f ∼ N(-0 + f (xi), 1)
{

I(−∞, 0) if yi = 0
I(0,∞) if yi = 1

f |zi , yi
d
= f |zi

Continuous BART with unit variance, 22 = 1 where zi are the data
Albert & Chib 1993 JASA
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Friedman’s partial dependence function (FPD) and
Marginal Effects Assuming Independent Covariates
Probit BART

p(x) = p(xY , xI)

= �(-0 + f (xY , xI))

pY (xY) = ExI [ p(xY , xI)|xY]

≈ T−1
∑

i

p(xY , xiI)

≡ T−1
∑

i

�(-0 + f (xY , xiI))

pYm (xY) ≡ T−1
∑

i

pm (xY , xiI)

p̂Y (xY) ≡ S−1
∑

m

pYm (xY)
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Extending FPD to Dependent Covariates
by the Empirical Imputation Marginal

I Consider our growth chart for height example
I To do this the right way, first we model the strong relationship

between age, sex and weight among children
E [w | t, u] = w̃ = -̃ + f̃ (t, u)

I We can summarize the relationship with a BART model
wi = -̃ + f̃ (ti , ui) + &̃i where f̃

prior
∼ BART

I For marginal effects more applicable to dependent variables

ft , u (t, u) = Ev [ f (t, u, v, w̃)| t, u, w̃]

= Q−1T−1
∑

k

∑

i

f (t, u, vi , f̃k (t, u))

where f̃k (t, u) are draws from the posterior

I However, this is just performing FPD Q times
so Q times more computationally demanding!
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Extending FPD to Dependent Covariates
by the Direct Imputation Marginal

I Consider our growth chart for height example
I We proceed as before by modeling the strong relationship

between age, sex and weight among children
E [w | t, u] = w̃ = -̃ + f̃ (t, u)

wi = -̃ + f̃ (ti , ui) + &̃i where f̃
prior
∼ BART

I For marginal effects more applicable to dependent variables

ft , u (t, u) = Ev [ f (t, u, v, w̃)| t, u, w̃ = E[w | t, u]]

= Ev
[

f (t, u, v, f̃ (t, u))| t, u
]

= T−1
∑

i

f (t, u, vi , f̃∗(t, u))

where f̃∗(t, u) = S−1
∑

m

f̃m (t, u)

I Now this is just performing FPD one time
so a more friendly computation!
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Extending FPD to Dependent Covariates
by the Nearest Neighbor Marginal

I Again consider our growth chart for height example
I t for age, u for sex, v for race/ethnicity and w for weight
I For age, t, we have a carefully chosen grid of values
−∞ = t̃0 < t̃1 < t̃2 < · · · < t̃P < t̃P+1 = ∞

I For sex, u, we have just two values: ũ ∈ {S, L}

fY ( t̃ j , ũ) = Q( t̃ j , ũ)
−1

∑

X(t̃ j ,ũ)

f ( t̃ j , ũ, vi , wi)

where X( t̃ j , ũ) = {i : t̃ j−1 < ti < t̃ j+1, ui = ũ}

and Q( t̃ j , ũ) = |X( t̃ j , ũ)|
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MLR marginal effects and computational efficiency

I How can marginal effects be calculated efficiently with BART?
I And beyond BART, many of the ideas that we will explore here

can be readily adapted to other MLR methods
I Nearest Neighbor Marginals are generally efficient, but may not

be applicable to every problem
I For large training sets, FPD can be computationally demanding

whether assuming independence or with Direct Imputation
I In these cases, we are seeking a faster marginal method than FPD
I We can speed up FPD by random sampling

Lundberg and Lee 2017 NIPS
Janzing, Minorics and Blobaum 2020 PMLR
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FPD vs. FPD by random sampling

FPD

fYLm
(xY) ≡ T−1

∑

i

fm (xY , xiI)

where xiI is a training value

f̂YL (xY) ≡ S−1
∑

m

fYLm
(xY)

FPD by random sampling

fYQ
Lm
(xY) ≡ Q−1

∑

k

fm (xY , xkmI)

xkmI is a draw from the training

f̂YQ
L
(xY) ≡ S−1

∑

m

fYQ
Lm
(xY)
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FPD by random sampling and the empirical variance

I It is clear that E
[

f̂YL (xY)
]

≈ E
[

f̂YQ
L
(xY)

]

I However, it is also clear that the variances are not equal

V
[

f̂YQ
L
(xY)|y

]

=V
[

E
[

f̂YQ
L
(xY)| f̂YL (xY), y

]

|y
]

+ E
[

V
[

f̂YQ
L
(xY)| f̂YL (xY), y

]

|y
]

=V
[

f̂YL (xY)|y
]

+ E
[

Q−1V
[

f (xY , xkI)| f̂YL (xY), y
]

|y
]

≈V
[

f̂YL (xY)|y
]

+ Q−1E
[

s2
YQ
L (xY)

|y
]

where s2
YQ
L (xY)

= Q−1
∑

k

( f (xY , xkI) − f̂YQ
L
(xY))

2
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FPD by random sampling and the empirical variance

V
[

f̂YQ
L
(xY)|y

]

≈V
[

f̂YL (xY)|y
]

+ Q−1E
[

s2
YQ
L (xY)

|y
]

I The first term V
[

f̂YL (xY)|y
]

is the target variance of the
calculation we want to avoid

I And the second term can be estimated from the posterior as
̂s2

YQ
L (xY)

= S−1 ∑

m s2
YQ
Lm
(xY)

I Therefore, we can empirically estimate the variance like so
V

[

f̂YL (xY)|y
]

≈ V
[

f̂YQ
L
(xY)|y

]

− Q−1
̂s2

YQ
L (xY)

I So, we generate the posterior for the random sampling estimator

fYLm
(xY) ≈ f̂YQ

L
(xY) +

[

fYQ
Lm
(xY) − f̂YQ

L
(xY)

]

√

√

V[ f̂YL (xY) |y]

V
[

f̂
YQ
L
(xY) |y

]
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Returning to the real data example
I CDC’s data is the US National Health and Nutrition Examination

Survey (NHANES) waves I-III
circa 1972 (I), 1978 (II), 1991 (III): n=12677

I For simplicity, I used NHANES annual/continuous 1999-2000
I The data set is in the BART3 package: bmx

see the growth*.R examples in demo
I 2-17 years (fractional age for months)
I each child only measured once
I height (cm) and weight (kg) collected
I Check MCMC convergence with max ̂X < 1.1 for 2:

Vehtari, Gelman et al. 2021 Bayesian Analysis
n %

Total 3435
Males 1768 51.5
Females 1667 48.5
White 800 23.3
Black 1035 30.1
Hispanic 1600 46.6
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X2 = 96.2% in the testing subset: growth1.R
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Marginal effect of age comparison

age

he
ig

ht
 (

cm
)
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180 FPD: t,u

M

5 10 15

F

EI: t,u
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180 DI: t,u,w(t,u)
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160
180

5 10 15

NN: t,u
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Heteroskedastic BART (HBART)
Pratola, Chipman, George & McCulloch 2020 JCGS

yi = -0 + f (xi) + s(xi)&i &i
iid
∼ N

(

0, w2
i2

2)

f
prior
∼ BART (a, b, N, +, -0, 3)

s2 prior
∼ HBART (ã, b̃, ˜N, ,̃, .̃)

s2
(xi) ≡

˜N
∏

h=1
g(xi; ˜Th, ˜Mh) ˜N ≈ N/5

22
hl |

˜Th
prior
∼ ,.6−2 (.) leaves of ˜Th , = ,̃1/ ˜N

∈ ˜Mh . = 2
[

1 −
(

1 −
2
.̃

)1/ ˜N ]−1
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Marginal effect of age: HBART predictions for M
Direct Imputation Marginal: hbart demo/height
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Marginal effect of age: HBART predictions for F
Direct Imputation Marginal: hbart demo/height
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Marginal effect of age: HBART vs. CDC for M
Direct Imputation Marginal: hbart demo/height
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Marginal effect of age: HBART vs. CDC for F
Direct Imputation Marginal: hbart demo/height
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MLR marginal effects and computational efficiency

I Shapley values are a popular choice for explainability that are
based on marginal effects

I However, Shapley values are very computationally intensive
(with their typical naive definition): not a reasonable alternative
unless the number of covariates is small

I Shapley values approximate f (x) by additive effects
(typically one variable at a time), e.g., f (x) ≈

∑

j f j (x j)

I f (x) is additive in terms of single covariate functions, f j (x j),
i.e., effectively, we are assuming independence

I But there is a common extension for two-way interactions
Lundberg and Erion et al. 2020 Nature Machine Intelligence
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Shapley value marginal effects of Independent Covariates

I Two equivalent definitions: original ordered vs.
more computationally friendly unordered

I Pj is the set of all ordered permutations of I−j ∪ {x j }

f j (x j) ≡ (V!)−1 ∑

Y∗∈Pj
[ f ∗j (xY∗) − f ∗

−j (xY∗)]
where f ∗j (xY∗) only evaluates arguments up to/including x j

and f ∗
−j (xY∗) only evaluates arguments before/excluding x j

I C∗j is the set of all unordered combinations I∗ ⊂ I−j

f j (x j) ≡
∑

I∗∈C∗j

|I∗ |!(V−|I∗ |−1)!
V! [ fY j (x j , xI∗) − fY−j (xI∗)]

I If each fY (.) are fit from the training
the number of fits needed grows rapidly with V

V 2 3 4 5 10 20 30 V
Fits 3 7 15 31 1,023 1,048,575 1,073,741,823 2V − 1
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Fast Shapley value approximations from a single fit

I Rather than fitting so many models, Shapley values can be
created from a single fit’s marginal effects

I For example, suppose fY (xY) = ExI∗

[

f (xY , xI∗)|xY
]

I This would certainly help but the computations are still daunting
unless the number of covariates is small

I There is a simple algorithm, EXPVALUE, for these marginals that
is basically equivalent to FPD
And there are more efficient, so-called Tree SHAP, algorithms
but these are far more complex
Lundberg and Erion et al. 2020 Nature Machine Intelligence

I And advanced random sampling schemes have been proposed
but they are challenging to implement as well
Yang, Zhou et al. 2023 JASA
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Shapley value marginal effects of Dependent Covariates
Marginal effect of age

I Shapley values come from game theory where
each player takes their turn and the order of play is important

I The players here are the covariates
I And as can be shown, the order of covariates doesn’t really matter

i.e., the order of covariates is arbitrary (Lundberg and Lee 2017)
I Nevertheless, all possible orderings of t, u, v, w: V! = 24

age age age age
first second third last

t, u, v, w u, t, v, w u, v, t, w u, v, w, t
t, u, w, v u, t, w, v u, w, t, v u, w, v, t
t, v, u, w v, t, u, w v, u, t, w v, u, w, t
t, v, w, u v, t, w, u v, w, t, u v, w, u, t
t, w, u, v w, t, u, v w, u, t, v w, u, v, t
t, w, v, u w, t, v, u w, v, t, u w, v, u, t
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Shapley value marginal effects of Dependent Covariates
Marginal effect of age

Differentials for t corresponding to each ordering
f (t)−0 f (u,t)−f (u) f (u,v,t)−f (u,v) f (u,v,w,t)−f (u,v,w)

f (t)−0 f (u,t)−f (u) f (u,w,t)−f (u,w) f (u,w,v,t)−f (u,w,v)

f (t)−0 f (v,t)−f (v) f (v,u,t)−f (v,u) f (v,u,w,t)−f (v,u,w)

f (t)−0 f (v,t)−f (v) f (v,w,t)−f (v,w) f (v,w,u,t)−f (v,w,u)

f (t)−0 f (w,t)−f (w) f (w,u,t)−f (w,u) f (w,u,v,t)−f (w,u,v)

f (t)−0 f (w,t)−f (w) f (w,v,t)−f (w,v) f (w,v,u,t)−f (w,v,u)

Weighted differentials for t corresponding to each ordering
6f (t) 2[f (t ,u)−f (u)] 2[f (t ,u,v)−f (u,v)] 6[f (t ,u,v,w)−f (u,v,w)]

2[f (t ,v)−f (v)] 2[f (t ,u,w)−f (u,w)]

2[f (t ,w)−f (w)] 2[f (t ,v,w)−f (v,w)]

0 1 2 3
3! 2! 2! 3!

Last row are the weights for the differentials: |I∗ |!(V − |Y| − |I∗ |)!
(Lundberg and Lee 2017)
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Shapley values and
Marginal Effects for Dependent Covariates
Extending Direct Imputation Marginal to SHAP

I As before, rely on the strong relationships of age, sex and weight
E [w | t, u] = w̃ = -̃ + f̃ (t, u)

where wi = -̃ + f̃ (ti , ui) + &̃i where f̃
prior
∼ BART

I For a marginal effect more applicable to dependent variables
Females: ft (t) + fu (L) + 2 ft:u (t, L) + fw (-̃ + f̃ (t, L))
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Marginal effects with Shapley values
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Marginal effect of age: computational efficiency measured
by system.time() in seconds

Computational Timings

user elapsed

Method s % s %
FPD: Direct Imputation Marginal 340 100 64 100
FPD: Nearest Neighbor Marginal 32 9 20 31
FPD: Random Sampling Q = 30 130 38 17 27
FPD: Random Sampling Q = 5 22 6 3 5
SHAP: t, age-only 1610 1610
SHAP: u, sex-only 249 249
SHAP: w, weight-only 2007 2011
SHAP: Direct Imputation Marginal 3866 1137 3870 6047
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Marginal effects for dependent covariates and
computational efficiency

I At first, it is quite surprising that FPD assumes independence
since it has the term dependence in its name

I Our new proposed marginals Nearest Neighbor and Random
Sampling with Direct Imputation are computationally efficient

I But the Shapley value marginals are very computationally
demanding and impractical

I It is possible to exploit the structure of binary trees to compute
Shapley values by the so-called Tree SHAP algorithms
Lundberg and Erion et al. 2020 Nature Machine Intelligence
for example, see the treeshap R package for Random Forests
but whether that makes them feasible is not yet known

I My BART3 package on github has S3 methods for FPD/SHAP
and their countparts with random sampling
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Conclusion

I This was an overview of BART and its place in machine learning
I Our focus was on the BART prior for continuous outcomes
I In particular, estimating marginal effects with BART whether

assuming independence or dependence
I We contrasted Friedman’s partial dependence function with

Shapley values
I And we have described facilitating these calculations with

opportunities for bettering performance statistically and
computationally

I We provide a reference implementation in the BART3 R package
with new and improved marginal effects S3 functions


