Speed Talk: Learned Reconstruction in Medical Imaging

Greg Ongie

Assistant Professor Mathematical and Statistical Sciences Marquette University

Most obvious place for machine learning is in post-processing

(initially) less obvious place: image reconstruction

Why bother with AI/ML in recon?

In Magnetic Resonance Imaging (MRI)...

- Physical limits to how fast data can be acquired
- Acquiring "fully sampled" data time-consuming
- Taking fewer measurements gives noise/artifacts

In X-ray Computed Tomography (CT)...

- Uses ionizing radiation potentially harmful to patient
- Can reduce dose but at the expense of noise/artifacts

accelerated knee MRI

"fully-sampled" knee MRI

standard dose breast CT scan

reduced dose breast CT scan

Example: Learned recon of accelerated MRI acquisitions

• Ex: Train neural network to de-artifact accelerated MRI acquisitions

Issue: Hallucination of clinically relevant details

ground truth

4-fold undersampled MRI

2306

figure from:

neural network recon

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 9, SEPTEMBER 2021

Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction

Issue: Erasure of clinically relevant details

breast CT phantom

breast CT simulation study

low-dose recon

neural network recon

O., Sidky, Resier, & Pan, SPIE Med Img 2021

My focus:

- 1. NN architecture design
- 2. Loss function design
- 3. Deep learning theory

Key Problem: How do we ensure learning approaches to image reconstruction yield faithful, reliable results, with task-specific improvements?

Thanks! Questions?

Website: gregongie.github.io E-mail: gregory.ongie@marquette.edu