Naveen Kumar Bansal GENE EXPRESSION ANALYSIS & QUEUEING THEORY

Detecting Targeted Genes

- Our genes are affected by external or internal sources such as COVID or Age.
- Numerous data are available on the gene expressions based on biotech such as Microarray or RNASeq.
- Objective is to determine the affected genes. Statistically this can be done via multiple hypothesis Testing.
- Steps involve normalizing, modeling, and performing multiple hypotheses.

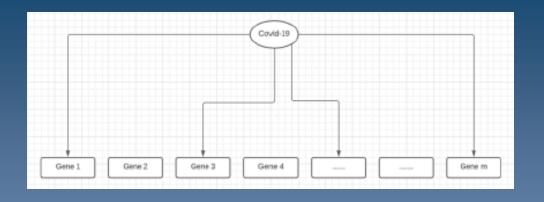
Modeling and Multiple Hypotheses

Directional Hypothesis

$$H_0^i: \theta_i = 0 \ vs. H_-^i: \theta_i > 0 \ or \ H_+^i: \theta_i > 0,$$

 $i = 1, 2, ...$ m

Introducing Prior with Skewness that allows


$$P(H_-^i) < P(H_+^i)$$

- Why Skewness?
- If genes are affected internally or from an outside source, it suppresses or elevates expressions of some genes (Targeted genes)
- It is unreasonable to assume $P(H_-^i) = P(H_+^i)$
- We develop Bayesian decision rules with controlled false discovery rate (DFDR).

Correlation Among Only Targeted Genes

- Only the affected genes are correlated
- There may be different layers of correlations

Statistical Inference on Queueing Models

- Birth and Death process
- Customers' arrivals and service times
- There are many probabilistic models on queue sizes under equilibrium.
- Performance Measures of the Queueing Systems

Hierarchical Bayesian Inference

- Queueing system over the period of the day with traffic intensity (ρ_t) changing over time
- Hierarchical Prior on ρ_t , $t = t_1, t_2, ..., t_k$
- Predictive Inferences of the future queue sizes

