Murray Blackmore

Assistant Professor Department of Biomedical Sciences Marquette University 516 N 15th St. SC446 Milwaukee, WI 53233 (414) 288-4532 murray.blackmore@marquette.edu

EDUCATION

1999-2005	University of Minnesota
	Ph.D. in Neuroscience
	(Advisor: Paul Letourneau)

1992-1996 Stanford University B.S. in Biological Earth Sciences

PROFESSIONAL EXPERIENCE

2011-	Assistant Professor Department of Biomedical Sciences, Marquette University
2009-2011	Research Assistant Professor The Miami Project to Cure Paralysis, University of Miami
2005-2009	Postdoctoral Fellow The Miami Project to Cure Paralysis, University of Miami

(Mentors: Vance Lemmon and John Bixby)

ACADEMIC HONORS AND AWARDS

1996	Award for highest GPA in major (4.0)
2000-2005	Howard Hughes Predoctoral Fellowship
2000	NSF Predoctoral Fellowship (declined)
2000	University of Minnesota, Morris Smithberg Memorial Prize
	(top performing first year Neuroscience Graduate Student)
2010	Cellome Award, Thermo Fisher, "Best published peer-reviewed scientific paper using high-content screening in 2009"

PUBLICATIONS Articles:

1. In preparation: **M. Blackmore.** Across the Regenerative Divide: Expression Profiling, High Throughput Screening, and the Hunt for Regeneration Associated Genes. Invited review for International Review of Neurobiology.

- M. Blackmore*, Z. Wang, D. Motti, J. L. Goldberg, V. P. Lemmon, and J. L. Bixby (2012). KLF7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. *Proceedings of the National Academy of Sciences* 109(18) 6845-6851.
 * Corresponding Author
- 3. **M. Blackmore**, D. L. Moore, R. P. Smith, J. L. Goldberg, J. L. Bixby, and V. P. Lemmon (2010). High content screening of cortical neurons identifies novel regulators of axon growth. *Molecular and Cellular Neuroscience*, 44(1):43-54.
- D. L. Moore*, M. Blackmore*, Y. Hu, K. H. Kaestner, J. L. Bixby, V. P. Lemmon, and J. L. Goldberg (2009). KLF family members regulate intrinsic axon regeneration ability. *Science* 5950(326): 298-301. *These authors contributed equally
- 5. **M. Blackmore** and P. Letourneau (2007). Protein synthesis in distal axons is not required for axon growth in the embryonic spinal cord. *Developmental Neurobiology* 67: 976-86.
- 6. **M. Blackmore** and P. Letourneau (2006). L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. *Journal of Neurobiology* 66: 1564-83.
- 7. **M. Blackmore** and P. Letourneau (2006). Changes within maturing neurons limit axonal regeneration in the developing spinal cord. *Journal of Neurobiology* 66: 348-60.
- 8. **M. Blackmore** and P. M Vitousek (2000). Cattle grazing, forest loss, and fuel loading in a dry forest ecosystem at Pu'u Wa'aWa'a ranch, Hawai'i. *Biotropica* 32:625-632.

Abstracts and Presentations:

- 1. **M. Blackmore**, Z. Wang, P. Zheng, C. Shields, V. P. Lemmon, J. L. Bixby (2011) In vivo testing of candidate genes to promote neuron-intrinsic growth ability and axon regeneration in the injured spinal cord. *International Symposium on Neural Regeneration*
- 2. **M. Blackmore**, Z. Wang, P. Zheng, C. Shields, V. P. Lemmon, J. L. Bixby (2011) In vivo testing of candidate genes to promote neuron-intrinsic growth ability and axon regeneration in the injured spinal cord. *Society for Neuroscience*
- 3. **M. Blackmore**, D. L. Moore, D. Motti, J. Bixby, V. P. Lemmon, J. L. Goldberg (2010). Krüppel-like transcription factors regulate axon growth in neurons: target identification and structure/function analysis. *FASEB Conference, "The Biology and Pathobiology of KLF Transcription Factors*"
- 4. D.L. Moore, **M. Blackmore**, J.L. Bixby, V.P. Lemmon, J.L. Goldberg (2009). The role of KLF4 in the developmental loss of intrinsic axon growth ability in retinal ganglion cells. *Society for Neuroscience*.
- 5. D.L. Moore, **M. Blackmore**, J.L. Goldberg (2009). Transcriptional Control of the intrinsic loss of axon growth ability in retinal ganglion cells. *Keystone Symposia, "Axonal Connections: Molecular Cues for Development and Regeneration"*

- 6. **M. Blackmore**, D. L. Moore, J. L. Goldberg, J. Bixby, V. P. Lemmon (2008). A developmentally regulated family of transcription factors controls axon growth in CNS neurons. *Society for Neuroscience*.
- 7. D.L. Moore, **M. Blackmore**, J.L. Goldberg (2008). Transcriptional control of intrinsic axon growth ability in retinal ganglion cells. *Society for Neuroscience*.
- 8. W. Buchser, Y. Shi, D. Gonzalez, M. Blackmore, T. Slepak, J. L. Bixby, V. P. Lemmon (2008). From High Content Screening to Scoring Hits: Standard Reporting for Screening Primary Neurons. *Cambridge Healthtech Institute, High Content Analysis, San Francisco, CA.* <u>Award for Outstanding Poster</u>.
- 9. **M. Blackmore**, T. Slepak, V. P. Lemmon (2007). A high throughput screen to identify novel regeneration associated genes in the developing corticospinal tract. *Reeve-Irvine Symposia and Roman Reed Research Meeting. University of California Irvine.*
- 10. **M. Blackmore** and P. Letourneau (2004). Neuron-Intrinsic Limitations to Axon Regeneration in the Developing Spinal Cord: The Role of Integrin, N-cadherin, and L1 Expression. *Society for Neuroscience*.
- 11. **M. Blackmore** and P. Letourneau (2003). Neuron-intrinsic limitations to Axon Regeneration in the Developing Spinal Cord. *Tenth International Symposium on Neural Regeneration*.
- 12. **M. Blackmore** and P. Letourneau (2002). Neuron-intrinsic factors are important in ending the permissive period for axonal regeneration during the development of the chicken brainstem-spinal projection. *Society for Neuroscience*.
- 13. **M. Blackmore** and P. Letourneau (2001). An in situ model of axon regeneration in the developing chicken brainstem-spinal projection. *Ninth International Symposium on Neural Regeneration*.

INVITED PRESENTATIONS

- 1. New Genes to Promote CNS Axon Regeneration (Oct 2011). *Neuroscience Seminar Series, University of Wisconsin, Milwaukee, WI*
- 2. High Content Screening Identifies Novel Regulators of Axon Regeneration (July 2011). National Neurotrauma Symposium, Hollywood, FL
- 3. High Content Screening Identifies Novel Regulators of Axon Regeneration (February 2011). Neuroscience Seminar Series, Drexel University College of Medicine, Philadelphia, PA.
- 4. A family feud: KLF transcription factors as positive and negative regulators of CNS axon regeneration (March 2010). *University of Minnesota Neuroscience Seminar Series, Minneapolis, MN*
- 5. Using HCA to Identify a Transcription Factor Family that Regulates the Intrinsic Ability of Neurons to Extend Axons (January 2010). Seventh Annual High Content Analysis Meeting, San Francisco.

6. High Content Screening of Neurons: Quality control, Spotfire, and API (September 2008). *Cellomics user meeting, Bridgewater, NJ.*

COMPLETED RESEARCH SUPPORT

State of Florida, James & Esther King Biomedical Research Program, 09KW-051/2010 – 9/2011Combination Therapy in SCI: Proof of Concept for New Compounds & Candidate Genes.\$300,000/yr (direct costs)P.I.: John BixbyRole on Project: Co-investigator

Department of Defense	9/2010-9/2011
Manipulation of KLF Target Genes to Promote Axon Regeneration	
\$70,000/year (direct costs)	
Role on Project: Co-investigator	

ONGOING RESEARCH SUPPORT

\$135,000/year (direct costs)

Role on Project: PI

Craig H. Nielsen Foundation Functional Testing of Regeneration-Associated Genes in Spinal Cord Injury \$125,000/year (direct costs) Role on Project: PI	7/2010-6/2012
Craig H. Nielsen Foundation Combinatorial KLF7-based strategies to promote corticospinal tract regeneration	7/2012-6/2014