The Impact of Simulated Learning Experience Sequencing on Clinical Decision Making

Aimee Woda PhD, RN BC, Jamie Hansen MSN, RN CNE, Mary Paquette MSN, RN, & Marilyn Bratt PhD, RN

Objectives

1. Describe ways to sequence simulation learning experiences in relation to hospital learning experiences.
2. Identify instruments used to assess nursing students’ perception of clinical decision making, self-confidence and anxiety in relation to clinical decision making.
3. Recognize ways to improve clinical decision making and self-confidence among nursing students.
4. Discuss how using simulation learning experiences can decrease anxiety among nursing students.

• Funded by Sigma Theta Tau International and The National League of Nursing

Clinical Decision Making

• Clinical decision making (CDM) is a complex process involving information processing, critical thinking, evaluating evidence, applying relevant knowledge, problem-solving skills, reflection, and clinical judgment to select the best course of action which optimizes a patient’s health and minimizes any potential harm (Standing, 2007).

• CDM improves nursing practice
 o Decline in medication errors (Dickson & Flynn, 2012)
 o Ability to recognize a change in patient status (Parker, 2014)
 o Increase in patient safety (Weiner et al., 2013)

Simulated Learning Experiences (SLE)

SLE Facilitates Integration of Learning from:
- Didactic theory courses
- Skills laboratory
- Experiences in the clinical practicum (Lasater, 2007)

SLE Improves Nurses:
- Practice Knowledge (Shinnick & Woo, 2015)
- Critical thinking (Jeffries, 2012)
- Problem solving (Meakim et al., 2013)
- Skills performance (Lamb, 2007; Lynagh et al., 2007)

Purpose

Identify if there are differences in nursing students’ perceptions of CDM, self-confidence, and anxiety based on the sequencing of SLE comparing:

- S (Simulation) - H (Hospital) group: SLE followed by hospital-based learning experiences (HLE)
- H (Hospital) - S (Simulation) group: HLE followed by SLE
Specific Aims

1. Are there differences in CDM between the H-S and S-H groups over time?
2. Are there differences between the H-S and S-H self-confidence during the CDM process over time?
3. Are there differences between the H-S and S-H in anxiety during the CDM process over time?

Theoretical Framework

Design and Method

• Quasi-experimental design comparing
 o CDM
 o CDM-related self-confidence
 o CDM-related anxiety

 Based on the sequencing of SLE and HLE

Data Collection

• Pre-Practicum
 o Demographics
 o The Clinical Decision Making in Nursing Scale (CDMNS) Cronbach’s α 0.83
 o The Nurse Anxiety and Self-Confidence with Clinical Decision Making (NASC-CDM)
 Cronbach’s α for self-confidence 0.97 and anxiety 0.96

• Post-Practicum
 o CDMNS
 o NASC-CDM

Study Participants

• N = 117 Students
 o Junior Level Medical-Surgical Practicum
 o 68 Traditional Undergraduate (UG)
 o 49 Generalist Entry Masters (GEM)
 o 91% Caucasian
 o 111 Females, 6 Males
 o Mean age 22
Data Analysis

- T-test
 - To assess differences between UG and GEM students
 - CDHNS and NASC-CDM
- Chi-Square Test
 - To assess differences between group demographics
 - Gender, ethnicity, academic program, work experience
- Repeated Measures ANOVA
 - To determine within and between group differences in scores on CDHNS and NASC-CDM

Results: Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Simulation-Hospital</th>
<th>Hospital-Simulation</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>21 (12.18)</td>
<td>22.3 (2.60)</td>
<td>2.79</td>
<td>.10</td>
</tr>
<tr>
<td>Gender</td>
<td>Female: 58 (96.7)</td>
<td>53 (91.4)</td>
<td>8.2</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>Male: 2 (3.3)</td>
<td>4 (7.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Caucasian: 54 (91.3)</td>
<td>50 (88.3)</td>
<td>4.21</td>
<td>.52</td>
</tr>
<tr>
<td></td>
<td>Other: 4 (6.7)</td>
<td>6 (10.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Program</td>
<td>BSN: 45 (75.0)</td>
<td>25 (44.6)</td>
<td>14.42</td>
<td><.01</td>
</tr>
<tr>
<td></td>
<td>GEM: 15 (25.0)</td>
<td>34 (59.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td>Nursing Assistant: 10 (16.7)</td>
<td>8 (14.4)</td>
<td>1.16</td>
<td>.29</td>
</tr>
<tr>
<td></td>
<td>Intern/Extern: 1 (1.6)</td>
<td>1 (1.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline Analysis

- No significant differences among study variables at baseline between the type of student
 - GEM vs UG

Study Aim 1

- Clinical Decision Making

Study Aim 2

- Self-Confidence with Clinical Decision Making

Study Aim 3

- Anxiety with Clinical Decision Making
Findings

• The sequencing of learning experiences did not result in differences in perceived CDM, self-confidence or anxiety with CDM at the completion of the semester.

Discussion

• One semester in a HLE or SLE may not be enough to improve CDM.

• S-H students may have had an inflated sense of CDM-related self-confidence:
 o Group had a higher percentage of UG.
 o Caring for simulated patients.

• S-H students may have had a significant decrease in anxiety with CDM:
 o Caring for simulated patients prior to hospitalized patients.

Impact on Nursing Education

• A sequenced simulation and hospital practicum may be an alternative to address current barriers for clinical placements.

• SLE prior to HLE may have decreased anxiety and increased self-confidence:
 o May enable students to learn better and improve clinical performance.

Study Limitations

• First semester with a revised curriculum:
 o Sequenced SLE/HLE.

• First course incorporating sequenced SLE:

• Non-diverse sample.

• Use of all self-report instruments:
 o Potential for recall.
 o Socially desirable answers.
 o No objective measures.

• Unequal distribution of GEM vs UG.

Future Research

• Repeat this study:
 o Larger sample size.
 o Multiple sites.
 o Other populations.
 o Subsequent courses.

• Longitudinal measures throughout curriculum.

• Include an objective measure.

Questions

• Repeat this study:
 o Larger sample size.
 o Multiple sites.
 o Other populations.
 o Subsequent courses.

• Longitudinal measures throughout curriculum.

• Include an objective measure.

